1 module capstone.capstone; 2 3 import core.stdc.config; 4 import core.stdc.stdio; 5 import core.stdc.stdarg; 6 7 import capstone.arm64; 8 import capstone.arm; 9 import capstone.evm; 10 import capstone.m680x; 11 import capstone.m68k; 12 import capstone.mips; 13 import capstone.ppc; 14 import capstone.sparc; 15 import capstone.systemz; 16 import capstone.tms320c64x; 17 import capstone.x86; 18 import capstone.xcore; 19 20 extern (C): 21 22 /* Capstone Disassembly Engine */ 23 /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2016 */ 24 25 // defined(CAPSTONE_STATIC) 26 27 // defined(CAPSTONE_STATIC) 28 29 // Capstone API version 30 enum CS_API_MAJOR = 4; 31 enum CS_API_MINOR = 0; 32 33 // Version for bleeding edge code of the Github's "next" branch. 34 // Use this if you want the absolutely latest development code. 35 // This version number will be bumped up whenever we have a new major change. 36 enum CS_NEXT_VERSION = 4; 37 38 // Capstone package version 39 enum CS_VERSION_MAJOR = CS_API_MAJOR; 40 enum CS_VERSION_MINOR = CS_API_MINOR; 41 enum CS_VERSION_EXTRA = 0; 42 43 /// Macro to create combined version which can be compared to 44 /// result of cs_version() API. 45 extern (D) auto CS_MAKE_VERSION(T0, T1)(auto ref T0 major, auto ref T1 minor) 46 { 47 return (major << 8) + minor; 48 } 49 50 /// Maximum size of an instruction mnemonic string. 51 enum CS_MNEMONIC_SIZE = 32; 52 53 // Handle using with all API 54 alias csh = c_ulong; 55 56 /// Architecture type 57 enum cs_arch 58 { 59 CS_ARCH_ARM = 0, ///< ARM architecture (including Thumb, Thumb-2) 60 CS_ARCH_ARM64 = 1, ///< ARM-64, also called AArch64 61 CS_ARCH_MIPS = 2, ///< Mips architecture 62 CS_ARCH_X86 = 3, ///< X86 architecture (including x86 & x86-64) 63 CS_ARCH_PPC = 4, ///< PowerPC architecture 64 CS_ARCH_SPARC = 5, ///< Sparc architecture 65 CS_ARCH_SYSZ = 6, ///< SystemZ architecture 66 CS_ARCH_XCORE = 7, ///< XCore architecture 67 CS_ARCH_M68K = 8, ///< 68K architecture 68 CS_ARCH_TMS320C64X = 9, ///< TMS320C64x architecture 69 CS_ARCH_M680X = 10, ///< 680X architecture 70 CS_ARCH_EVM = 11, ///< Ethereum architecture 71 CS_ARCH_MAX = 12, 72 CS_ARCH_ALL = 0xFFFF // All architectures - for cs_support() 73 } 74 75 // Support value to verify diet mode of the engine. 76 // If cs_support(CS_SUPPORT_DIET) return True, the engine was compiled 77 // in diet mode. 78 enum CS_SUPPORT_DIET = cs_arch.CS_ARCH_ALL + 1; 79 80 // Support value to verify X86 reduce mode of the engine. 81 // If cs_support(CS_SUPPORT_X86_REDUCE) return True, the engine was compiled 82 // in X86 reduce mode. 83 enum CS_SUPPORT_X86_REDUCE = cs_arch.CS_ARCH_ALL + 2; 84 85 /// Mode type 86 enum cs_mode 87 { 88 CS_MODE_LITTLE_ENDIAN = 0, ///< little-endian mode (default mode) 89 CS_MODE_ARM = 0, ///< 32-bit ARM 90 CS_MODE_16 = 1 << 1, ///< 16-bit mode (X86) 91 CS_MODE_32 = 1 << 2, ///< 32-bit mode (X86) 92 CS_MODE_64 = 1 << 3, ///< 64-bit mode (X86, PPC) 93 CS_MODE_THUMB = 1 << 4, ///< ARM's Thumb mode, including Thumb-2 94 CS_MODE_MCLASS = 1 << 5, ///< ARM's Cortex-M series 95 CS_MODE_V8 = 1 << 6, ///< ARMv8 A32 encodings for ARM 96 CS_MODE_MICRO = 1 << 4, ///< MicroMips mode (MIPS) 97 CS_MODE_MIPS3 = 1 << 5, ///< Mips III ISA 98 CS_MODE_MIPS32R6 = 1 << 6, ///< Mips32r6 ISA 99 CS_MODE_MIPS2 = 1 << 7, ///< Mips II ISA 100 CS_MODE_V9 = 1 << 4, ///< SparcV9 mode (Sparc) 101 CS_MODE_QPX = 1 << 4, ///< Quad Processing eXtensions mode (PPC) 102 CS_MODE_M68K_000 = 1 << 1, ///< M68K 68000 mode 103 CS_MODE_M68K_010 = 1 << 2, ///< M68K 68010 mode 104 CS_MODE_M68K_020 = 1 << 3, ///< M68K 68020 mode 105 CS_MODE_M68K_030 = 1 << 4, ///< M68K 68030 mode 106 CS_MODE_M68K_040 = 1 << 5, ///< M68K 68040 mode 107 CS_MODE_M68K_060 = 1 << 6, ///< M68K 68060 mode 108 CS_MODE_BIG_ENDIAN = 1 << 31, ///< big-endian mode 109 CS_MODE_MIPS32 = CS_MODE_32, ///< Mips32 ISA (Mips) 110 CS_MODE_MIPS64 = CS_MODE_64, ///< Mips64 ISA (Mips) 111 CS_MODE_M680X_6301 = 1 << 1, ///< M680X Hitachi 6301,6303 mode 112 CS_MODE_M680X_6309 = 1 << 2, ///< M680X Hitachi 6309 mode 113 CS_MODE_M680X_6800 = 1 << 3, ///< M680X Motorola 6800,6802 mode 114 CS_MODE_M680X_6801 = 1 << 4, ///< M680X Motorola 6801,6803 mode 115 CS_MODE_M680X_6805 = 1 << 5, ///< M680X Motorola/Freescale 6805 mode 116 CS_MODE_M680X_6808 = 1 << 6, ///< M680X Motorola/Freescale/NXP 68HC08 mode 117 CS_MODE_M680X_6809 = 1 << 7, ///< M680X Motorola 6809 mode 118 CS_MODE_M680X_6811 = 1 << 8, ///< M680X Motorola/Freescale/NXP 68HC11 mode 119 CS_MODE_M680X_CPU12 = 1 << 9, ///< M680X Motorola/Freescale/NXP CPU12 120 ///< used on M68HC12/HCS12 121 CS_MODE_M680X_HCS08 = 1 << 10 ///< M680X Freescale/NXP HCS08 mode 122 } 123 124 alias cs_malloc_t = void* function (size_t size); 125 alias cs_calloc_t = void* function (size_t nmemb, size_t size); 126 alias cs_realloc_t = void* function (void* ptr, size_t size); 127 alias cs_free_t = void function (void* ptr); 128 alias cs_vsnprintf_t = int function (char* str, size_t size, const(char)* format, va_list ap); 129 130 /// User-defined dynamic memory related functions: malloc/calloc/realloc/free/vsnprintf() 131 /// By default, Capstone uses system's malloc(), calloc(), realloc(), free() & vsnprintf(). 132 struct cs_opt_mem 133 { 134 cs_malloc_t malloc; 135 cs_calloc_t calloc; 136 cs_realloc_t realloc; 137 cs_free_t free; 138 cs_vsnprintf_t vsnprintf; 139 } 140 141 /// Customize mnemonic for instructions with alternative name. 142 /// To reset existing customized instruction to its default mnemonic, 143 /// call cs_option(CS_OPT_MNEMONIC) again with the same @id and NULL value 144 /// for @mnemonic. 145 struct cs_opt_mnem 146 { 147 /// ID of instruction to be customized. 148 uint id; 149 /// Customized instruction mnemonic. 150 const(char)* mnemonic; 151 } 152 153 /// Runtime option for the disassembled engine 154 enum cs_opt_type 155 { 156 CS_OPT_INVALID = 0, ///< No option specified 157 CS_OPT_SYNTAX = 1, ///< Assembly output syntax 158 CS_OPT_DETAIL = 2, ///< Break down instruction structure into details 159 CS_OPT_MODE = 3, ///< Change engine's mode at run-time 160 CS_OPT_MEM = 4, ///< User-defined dynamic memory related functions 161 CS_OPT_SKIPDATA = 5, ///< Skip data when disassembling. Then engine is in SKIPDATA mode. 162 CS_OPT_SKIPDATA_SETUP = 6, ///< Setup user-defined function for SKIPDATA option 163 CS_OPT_MNEMONIC = 7, ///< Customize instruction mnemonic 164 CS_OPT_UNSIGNED = 8 ///< print immediate operands in unsigned form 165 } 166 167 /// Runtime option value (associated with option type above) 168 enum cs_opt_value 169 { 170 CS_OPT_OFF = 0, ///< Turn OFF an option - default for CS_OPT_DETAIL, CS_OPT_SKIPDATA, CS_OPT_UNSIGNED. 171 CS_OPT_ON = 3, ///< Turn ON an option (CS_OPT_DETAIL, CS_OPT_SKIPDATA). 172 CS_OPT_SYNTAX_DEFAULT = 0, ///< Default asm syntax (CS_OPT_SYNTAX). 173 CS_OPT_SYNTAX_INTEL = 1, ///< X86 Intel asm syntax - default on X86 (CS_OPT_SYNTAX). 174 CS_OPT_SYNTAX_ATT = 2, ///< X86 ATT asm syntax (CS_OPT_SYNTAX). 175 CS_OPT_SYNTAX_NOREGNAME = 3, ///< Prints register name with only number (CS_OPT_SYNTAX) 176 CS_OPT_SYNTAX_MASM = 4 ///< X86 Intel Masm syntax (CS_OPT_SYNTAX). 177 } 178 179 /// Common instruction operand types - to be consistent across all architectures. 180 enum cs_op_type 181 { 182 CS_OP_INVALID = 0, ///< uninitialized/invalid operand. 183 CS_OP_REG = 1, ///< Register operand. 184 CS_OP_IMM = 2, ///< Immediate operand. 185 CS_OP_MEM = 3, ///< Memory operand. 186 CS_OP_FP = 4 ///< Floating-Point operand. 187 } 188 189 /// Common instruction operand access types - to be consistent across all architectures. 190 /// It is possible to combine access types, for example: CS_AC_READ | CS_AC_WRITE 191 enum cs_ac_type 192 { 193 CS_AC_INVALID = 0, ///< Uninitialized/invalid access type. 194 CS_AC_READ = 1 << 0, ///< Operand read from memory or register. 195 CS_AC_WRITE = 1 << 1 ///< Operand write to memory or register. 196 } 197 198 /// Common instruction groups - to be consistent across all architectures. 199 enum cs_group_type 200 { 201 CS_GRP_INVALID = 0, ///< uninitialized/invalid group. 202 CS_GRP_JUMP = 1, ///< all jump instructions (conditional+direct+indirect jumps) 203 CS_GRP_CALL = 2, ///< all call instructions 204 CS_GRP_RET = 3, ///< all return instructions 205 CS_GRP_INT = 4, ///< all interrupt instructions (int+syscall) 206 CS_GRP_IRET = 5, ///< all interrupt return instructions 207 CS_GRP_PRIVILEGE = 6, ///< all privileged instructions 208 CS_GRP_BRANCH_RELATIVE = 7 ///< all relative branching instructions 209 } 210 211 /** 212 User-defined callback function for SKIPDATA option. 213 See tests/test_skipdata.c for sample code demonstrating this API. 214 215 @code: the input buffer containing code to be disassembled. 216 This is the same buffer passed to cs_disasm(). 217 @code_size: size (in bytes) of the above @code buffer. 218 @offset: the position of the currently-examining byte in the input 219 buffer @code mentioned above. 220 @user_data: user-data passed to cs_option() via @user_data field in 221 cs_opt_skipdata struct below. 222 223 @return: return number of bytes to skip, or 0 to immediately stop disassembling. 224 */ 225 alias cs_skipdata_cb_t = c_ulong function (const(ubyte)* code, size_t code_size, size_t offset, void* user_data); 226 227 /// User-customized setup for SKIPDATA option 228 struct cs_opt_skipdata 229 { 230 /// Capstone considers data to skip as special "instructions". 231 /// User can specify the string for this instruction's "mnemonic" here. 232 /// By default (if @mnemonic is NULL), Capstone use ".byte". 233 const(char)* mnemonic; 234 235 /// User-defined callback function to be called when Capstone hits data. 236 /// If the returned value from this callback is positive (>0), Capstone 237 /// will skip exactly that number of bytes & continue. Otherwise, if 238 /// the callback returns 0, Capstone stops disassembling and returns 239 /// immediately from cs_disasm() 240 /// NOTE: if this callback pointer is NULL, Capstone would skip a number 241 /// of bytes depending on architectures, as following: 242 /// Arm: 2 bytes (Thumb mode) or 4 bytes. 243 /// Arm64: 4 bytes. 244 /// Mips: 4 bytes. 245 /// M680x: 1 byte. 246 /// PowerPC: 4 bytes. 247 /// Sparc: 4 bytes. 248 /// SystemZ: 2 bytes. 249 /// X86: 1 bytes. 250 /// XCore: 2 bytes. 251 /// EVM: 1 bytes. 252 cs_skipdata_cb_t callback; // default value is NULL 253 254 /// User-defined data to be passed to @callback function pointer. 255 void* user_data; 256 } 257 258 /// NOTE: All information in cs_detail is only available when CS_OPT_DETAIL = CS_OPT_ON 259 /// Initialized as memset(., 0, offsetof(cs_detail, ARCH)+sizeof(cs_ARCH)) 260 /// by ARCH_getInstruction in arch/ARCH/ARCHDisassembler.c 261 /// if cs_detail changes, in particular if a field is added after the union, 262 /// then update arch/ARCH/ARCHDisassembler.c accordingly 263 struct cs_detail 264 { 265 ushort[12] regs_read; ///< list of implicit registers read by this insn 266 ubyte regs_read_count; ///< number of implicit registers read by this insn 267 268 ushort[20] regs_write; ///< list of implicit registers modified by this insn 269 ubyte regs_write_count; ///< number of implicit registers modified by this insn 270 271 ubyte[8] groups; ///< list of group this instruction belong to 272 ubyte groups_count; ///< number of groups this insn belongs to 273 274 /// Architecture-specific instruction info 275 union 276 { 277 cs_x86 x86; ///< X86 architecture, including 16-bit, 32-bit & 64-bit mode 278 cs_arm64 arm64; ///< ARM64 architecture (aka AArch64) 279 cs_arm arm; ///< ARM architecture (including Thumb/Thumb2) 280 cs_m68k m68k; ///< M68K architecture 281 cs_mips mips; ///< MIPS architecture 282 cs_ppc ppc; ///< PowerPC architecture 283 cs_sparc sparc; ///< Sparc architecture 284 cs_sysz sysz; ///< SystemZ architecture 285 cs_xcore xcore; ///< XCore architecture 286 cs_tms320c64x tms320c64x; ///< TMS320C64x architecture 287 cs_m680x m680x; ///< M680X architecture 288 cs_evm evm; ///< Ethereum architecture 289 } 290 } 291 292 /// Detail information of disassembled instruction 293 struct cs_insn 294 { 295 /// Instruction ID (basically a numeric ID for the instruction mnemonic) 296 /// Find the instruction id in the '[ARCH]_insn' enum in the header file 297 /// of corresponding architecture, such as 'arm_insn' in arm.h for ARM, 298 /// 'x86_insn' in x86.h for X86, etc... 299 /// This information is available even when CS_OPT_DETAIL = CS_OPT_OFF 300 /// NOTE: in Skipdata mode, "data" instruction has 0 for this id field. 301 uint id; 302 303 /// Address (EIP) of this instruction 304 /// This information is available even when CS_OPT_DETAIL = CS_OPT_OFF 305 ulong address; 306 307 /// Size of this instruction 308 /// This information is available even when CS_OPT_DETAIL = CS_OPT_OFF 309 ushort size; 310 311 /// Machine bytes of this instruction, with number of bytes indicated by @size above 312 /// This information is available even when CS_OPT_DETAIL = CS_OPT_OFF 313 ubyte[16] bytes; 314 315 /// Ascii text of instruction mnemonic 316 /// This information is available even when CS_OPT_DETAIL = CS_OPT_OFF 317 char[CS_MNEMONIC_SIZE] mnemonic; 318 319 /// Ascii text of instruction operands 320 /// This information is available even when CS_OPT_DETAIL = CS_OPT_OFF 321 char[160] op_str; 322 323 /// Pointer to cs_detail. 324 /// NOTE: detail pointer is only valid when both requirements below are met: 325 /// (1) CS_OP_DETAIL = CS_OPT_ON 326 /// (2) Engine is not in Skipdata mode (CS_OP_SKIPDATA option set to CS_OPT_ON) 327 /// 328 /// NOTE 2: when in Skipdata mode, or when detail mode is OFF, even if this pointer 329 /// is not NULL, its content is still irrelevant. 330 cs_detail* detail; 331 } 332 333 /// Calculate the offset of a disassembled instruction in its buffer, given its position 334 /// in its array of disassembled insn 335 /// NOTE: this macro works with position (>=1), not index 336 extern (D) auto CS_INSN_OFFSET(T0, T1)(auto ref T0 insns, auto ref T1 post) 337 { 338 return insns[post - 1].address - insns[0].address; 339 } 340 341 /// All type of errors encountered by Capstone API. 342 /// These are values returned by cs_errno() 343 enum cs_err 344 { 345 CS_ERR_OK = 0, ///< No error: everything was fine 346 CS_ERR_MEM = 1, ///< Out-Of-Memory error: cs_open(), cs_disasm(), cs_disasm_iter() 347 CS_ERR_ARCH = 2, ///< Unsupported architecture: cs_open() 348 CS_ERR_HANDLE = 3, ///< Invalid handle: cs_op_count(), cs_op_index() 349 CS_ERR_CSH = 4, ///< Invalid csh argument: cs_close(), cs_errno(), cs_option() 350 CS_ERR_MODE = 5, ///< Invalid/unsupported mode: cs_open() 351 CS_ERR_OPTION = 6, ///< Invalid/unsupported option: cs_option() 352 CS_ERR_DETAIL = 7, ///< Information is unavailable because detail option is OFF 353 CS_ERR_MEMSETUP = 8, ///< Dynamic memory management uninitialized (see CS_OPT_MEM) 354 CS_ERR_VERSION = 9, ///< Unsupported version (bindings) 355 CS_ERR_DIET = 10, ///< Access irrelevant data in "diet" engine 356 CS_ERR_SKIPDATA = 11, ///< Access irrelevant data for "data" instruction in SKIPDATA mode 357 CS_ERR_X86_ATT = 12, ///< X86 AT&T syntax is unsupported (opt-out at compile time) 358 CS_ERR_X86_INTEL = 13, ///< X86 Intel syntax is unsupported (opt-out at compile time) 359 CS_ERR_X86_MASM = 14 ///< X86 Intel syntax is unsupported (opt-out at compile time) 360 } 361 362 /** 363 Return combined API version & major and minor version numbers. 364 365 @major: major number of API version 366 @minor: minor number of API version 367 368 @return hexical number as (major << 8 | minor), which encodes both 369 major & minor versions. 370 NOTE: This returned value can be compared with version number made 371 with macro CS_MAKE_VERSION 372 373 For example, second API version would return 1 in @major, and 1 in @minor 374 The return value would be 0x0101 375 376 NOTE: if you only care about returned value, but not major and minor values, 377 set both @major & @minor arguments to NULL. 378 */ 379 uint cs_version (int* major, int* minor); 380 381 /** 382 This API can be used to either ask for archs supported by this library, 383 or check to see if the library was compile with 'diet' option (or called 384 in 'diet' mode). 385 386 To check if a particular arch is supported by this library, set @query to 387 arch mode (CS_ARCH_* value). 388 To verify if this library supports all the archs, use CS_ARCH_ALL. 389 390 To check if this library is in 'diet' mode, set @query to CS_SUPPORT_DIET. 391 392 @return True if this library supports the given arch, or in 'diet' mode. 393 */ 394 bool cs_support (int query); 395 396 /** 397 Initialize CS handle: this must be done before any usage of CS. 398 399 @arch: architecture type (CS_ARCH_*) 400 @mode: hardware mode. This is combined of CS_MODE_* 401 @handle: pointer to handle, which will be updated at return time 402 403 @return CS_ERR_OK on success, or other value on failure (refer to cs_err enum 404 for detailed error). 405 */ 406 cs_err cs_open (cs_arch arch, cs_mode mode, csh* handle); 407 408 /** 409 Close CS handle: MUST do to release the handle when it is not used anymore. 410 NOTE: this must be only called when there is no longer usage of Capstone, 411 not even access to cs_insn array. The reason is the this API releases some 412 cached memory, thus access to any Capstone API after cs_close() might crash 413 your application. 414 415 In fact,this API invalidate @handle by ZERO out its value (i.e *handle = 0). 416 417 @handle: pointer to a handle returned by cs_open() 418 419 @return CS_ERR_OK on success, or other value on failure (refer to cs_err enum 420 for detailed error). 421 */ 422 cs_err cs_close (csh* handle); 423 424 /** 425 Set option for disassembling engine at runtime 426 427 @handle: handle returned by cs_open() 428 @type: type of option to be set 429 @value: option value corresponding with @type 430 431 @return: CS_ERR_OK on success, or other value on failure. 432 Refer to cs_err enum for detailed error. 433 434 NOTE: in the case of CS_OPT_MEM, handle's value can be anything, 435 so that cs_option(handle, CS_OPT_MEM, value) can (i.e must) be called 436 even before cs_open() 437 */ 438 cs_err cs_option (csh handle, cs_opt_type type, size_t value); 439 440 /** 441 Report the last error number when some API function fail. 442 Like glibc's errno, cs_errno might not retain its old value once accessed. 443 444 @handle: handle returned by cs_open() 445 446 @return: error code of cs_err enum type (CS_ERR_*, see above) 447 */ 448 cs_err cs_errno (csh handle); 449 450 /** 451 Return a string describing given error code. 452 453 @code: error code (see CS_ERR_* above) 454 455 @return: returns a pointer to a string that describes the error code 456 passed in the argument @code 457 */ 458 const(char)* cs_strerror (cs_err code); 459 460 /** 461 Disassemble binary code, given the code buffer, size, address and number 462 of instructions to be decoded. 463 This API dynamically allocate memory to contain disassembled instruction. 464 Resulting instructions will be put into @*insn 465 466 NOTE 1: this API will automatically determine memory needed to contain 467 output disassembled instructions in @insn. 468 469 NOTE 2: caller must free the allocated memory itself to avoid memory leaking. 470 471 NOTE 3: for system with scarce memory to be dynamically allocated such as 472 OS kernel or firmware, the API cs_disasm_iter() might be a better choice than 473 cs_disasm(). The reason is that with cs_disasm(), based on limited available 474 memory, we have to calculate in advance how many instructions to be disassembled, 475 which complicates things. This is especially troublesome for the case @count=0, 476 when cs_disasm() runs uncontrollably (until either end of input buffer, or 477 when it encounters an invalid instruction). 478 479 @handle: handle returned by cs_open() 480 @code: buffer containing raw binary code to be disassembled. 481 @code_size: size of the above code buffer. 482 @address: address of the first instruction in given raw code buffer. 483 @insn: array of instructions filled in by this API. 484 NOTE: @insn will be allocated by this function, and should be freed 485 with cs_free() API. 486 @count: number of instructions to be disassembled, or 0 to get all of them 487 488 @return: the number of successfully disassembled instructions, 489 or 0 if this function failed to disassemble the given code 490 491 On failure, call cs_errno() for error code. 492 */ 493 size_t cs_disasm ( 494 csh handle, 495 const(ubyte)* code, 496 size_t code_size, 497 ulong address, 498 size_t count, 499 cs_insn** insn); 500 501 /** 502 Deprecated function - to be retired in the next version! 503 Use cs_disasm() instead of cs_disasm_ex() 504 */ 505 size_t cs_disasm_ex ( 506 csh handle, 507 const(ubyte)* code, 508 size_t code_size, 509 ulong address, 510 size_t count, 511 cs_insn** insn); 512 513 /** 514 Free memory allocated by cs_malloc() or cs_disasm() (argument @insn) 515 516 @insn: pointer returned by @insn argument in cs_disasm() or cs_malloc() 517 @count: number of cs_insn structures returned by cs_disasm(), or 1 518 to free memory allocated by cs_malloc(). 519 */ 520 void cs_free (cs_insn* insn, size_t count); 521 522 /** 523 Allocate memory for 1 instruction to be used by cs_disasm_iter(). 524 525 @handle: handle returned by cs_open() 526 527 NOTE: when no longer in use, you can reclaim the memory allocated for 528 this instruction with cs_free(insn, 1) 529 */ 530 cs_insn* cs_malloc (csh handle); 531 532 /** 533 Fast API to disassemble binary code, given the code buffer, size, address 534 and number of instructions to be decoded. 535 This API puts the resulting instruction into a given cache in @insn. 536 See tests/test_iter.c for sample code demonstrating this API. 537 538 NOTE 1: this API will update @code, @size & @address to point to the next 539 instruction in the input buffer. Therefore, it is convenient to use 540 cs_disasm_iter() inside a loop to quickly iterate all the instructions. 541 While decoding one instruction at a time can also be achieved with 542 cs_disasm(count=1), some benchmarks shown that cs_disasm_iter() can be 30% 543 faster on random input. 544 545 NOTE 2: the cache in @insn can be created with cs_malloc() API. 546 547 NOTE 3: for system with scarce memory to be dynamically allocated such as 548 OS kernel or firmware, this API is recommended over cs_disasm(), which 549 allocates memory based on the number of instructions to be disassembled. 550 The reason is that with cs_disasm(), based on limited available memory, 551 we have to calculate in advance how many instructions to be disassembled, 552 which complicates things. This is especially troublesome for the case 553 @count=0, when cs_disasm() runs uncontrollably (until either end of input 554 buffer, or when it encounters an invalid instruction). 555 556 @handle: handle returned by cs_open() 557 @code: buffer containing raw binary code to be disassembled 558 @size: size of above code 559 @address: address of the first insn in given raw code buffer 560 @insn: pointer to instruction to be filled in by this API. 561 562 @return: true if this API successfully decode 1 instruction, 563 or false otherwise. 564 565 On failure, call cs_errno() for error code. 566 */ 567 bool cs_disasm_iter ( 568 csh handle, 569 const(ubyte*)* code, 570 size_t* size, 571 ulong* address, 572 cs_insn* insn); 573 574 /** 575 Return friendly name of register in a string. 576 Find the instruction id from header file of corresponding architecture (arm.h for ARM, 577 x86.h for X86, ...) 578 579 WARN: when in 'diet' mode, this API is irrelevant because engine does not 580 store register name. 581 582 @handle: handle returned by cs_open() 583 @reg_id: register id 584 585 @return: string name of the register, or NULL if @reg_id is invalid. 586 */ 587 const(char)* cs_reg_name (csh handle, uint reg_id); 588 589 /** 590 Return friendly name of an instruction in a string. 591 Find the instruction id from header file of corresponding architecture (arm.h for ARM, x86.h for X86, ...) 592 593 WARN: when in 'diet' mode, this API is irrelevant because the engine does not 594 store instruction name. 595 596 @handle: handle returned by cs_open() 597 @insn_id: instruction id 598 599 @return: string name of the instruction, or NULL if @insn_id is invalid. 600 */ 601 const(char)* cs_insn_name (csh handle, uint insn_id); 602 603 /** 604 Return friendly name of a group id (that an instruction can belong to) 605 Find the group id from header file of corresponding architecture (arm.h for ARM, x86.h for X86, ...) 606 607 WARN: when in 'diet' mode, this API is irrelevant because the engine does not 608 store group name. 609 610 @handle: handle returned by cs_open() 611 @group_id: group id 612 613 @return: string name of the group, or NULL if @group_id is invalid. 614 */ 615 const(char)* cs_group_name (csh handle, uint group_id); 616 617 /** 618 Check if a disassembled instruction belong to a particular group. 619 Find the group id from header file of corresponding architecture (arm.h for ARM, x86.h for X86, ...) 620 Internally, this simply verifies if @group_id matches any member of insn->groups array. 621 622 NOTE: this API is only valid when detail option is ON (which is OFF by default). 623 624 WARN: when in 'diet' mode, this API is irrelevant because the engine does not 625 update @groups array. 626 627 @handle: handle returned by cs_open() 628 @insn: disassembled instruction structure received from cs_disasm() or cs_disasm_iter() 629 @group_id: group that you want to check if this instruction belong to. 630 631 @return: true if this instruction indeed belongs to the given group, or false otherwise. 632 */ 633 bool cs_insn_group (csh handle, const(cs_insn)* insn, uint group_id); 634 635 /** 636 Check if a disassembled instruction IMPLICITLY used a particular register. 637 Find the register id from header file of corresponding architecture (arm.h for ARM, x86.h for X86, ...) 638 Internally, this simply verifies if @reg_id matches any member of insn->regs_read array. 639 640 NOTE: this API is only valid when detail option is ON (which is OFF by default) 641 642 WARN: when in 'diet' mode, this API is irrelevant because the engine does not 643 update @regs_read array. 644 645 @insn: disassembled instruction structure received from cs_disasm() or cs_disasm_iter() 646 @reg_id: register that you want to check if this instruction used it. 647 648 @return: true if this instruction indeed implicitly used the given register, or false otherwise. 649 */ 650 bool cs_reg_read (csh handle, const(cs_insn)* insn, uint reg_id); 651 652 /** 653 Check if a disassembled instruction IMPLICITLY modified a particular register. 654 Find the register id from header file of corresponding architecture (arm.h for ARM, x86.h for X86, ...) 655 Internally, this simply verifies if @reg_id matches any member of insn->regs_write array. 656 657 NOTE: this API is only valid when detail option is ON (which is OFF by default) 658 659 WARN: when in 'diet' mode, this API is irrelevant because the engine does not 660 update @regs_write array. 661 662 @insn: disassembled instruction structure received from cs_disasm() or cs_disasm_iter() 663 @reg_id: register that you want to check if this instruction modified it. 664 665 @return: true if this instruction indeed implicitly modified the given register, or false otherwise. 666 */ 667 bool cs_reg_write (csh handle, const(cs_insn)* insn, uint reg_id); 668 669 /** 670 Count the number of operands of a given type. 671 Find the operand type in header file of corresponding architecture (arm.h for ARM, x86.h for X86, ...) 672 673 NOTE: this API is only valid when detail option is ON (which is OFF by default) 674 675 @handle: handle returned by cs_open() 676 @insn: disassembled instruction structure received from cs_disasm() or cs_disasm_iter() 677 @op_type: Operand type to be found. 678 679 @return: number of operands of given type @op_type in instruction @insn, 680 or -1 on failure. 681 */ 682 int cs_op_count (csh handle, const(cs_insn)* insn, uint op_type); 683 684 /** 685 Retrieve the position of operand of given type in <arch>.operands[] array. 686 Later, the operand can be accessed using the returned position. 687 Find the operand type in header file of corresponding architecture (arm.h for ARM, x86.h for X86, ...) 688 689 NOTE: this API is only valid when detail option is ON (which is OFF by default) 690 691 @handle: handle returned by cs_open() 692 @insn: disassembled instruction structure received from cs_disasm() or cs_disasm_iter() 693 @op_type: Operand type to be found. 694 @position: position of the operand to be found. This must be in the range 695 [1, cs_op_count(handle, insn, op_type)] 696 697 @return: index of operand of given type @op_type in <arch>.operands[] array 698 in instruction @insn, or -1 on failure. 699 */ 700 int cs_op_index (csh handle, const(cs_insn)* insn, uint op_type, uint position); 701 702 /// Type of array to keep the list of registers 703 alias cs_regs = ushort[64]; 704 705 /** 706 Retrieve all the registers accessed by an instruction, either explicitly or 707 implicitly. 708 709 WARN: when in 'diet' mode, this API is irrelevant because engine does not 710 store registers. 711 712 @handle: handle returned by cs_open() 713 @insn: disassembled instruction structure returned from cs_disasm() or cs_disasm_iter() 714 @regs_read: on return, this array contains all registers read by instruction. 715 @regs_read_count: number of registers kept inside @regs_read array. 716 @regs_write: on return, this array contains all registers written by instruction. 717 @regs_write_count: number of registers kept inside @regs_write array. 718 719 @return CS_ERR_OK on success, or other value on failure (refer to cs_err enum 720 for detailed error). 721 */ 722 cs_err cs_regs_access ( 723 csh handle, 724 const(cs_insn)* insn, 725 cs_regs regs_read, 726 ubyte* regs_read_count, 727 cs_regs regs_write, 728 ubyte* regs_write_count); 729